
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Replication of "code2seq: Generating Sequences from Structured
Representations of Code" with New dataset (Python)

Soheil Changizi
changizs@myumanitoba.ca
University of Manitoba
Winnipeg, MB, CA

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Finding an approach to gather meaningful features can benefit us
in many applications such as code summarization, documentation,
retrieval, and creation. Using Code2Seq, we can model the rela-
tionship between source code and natural language by extracting
natural language sequence from a fragment of source code. Seq2seq
models inspired this approach by using an encoder-decoder archi-
tecture to generate meaningful sequences from raw source code.
This approach encodes a code snippet in its abstract syntax tree
(AST) as a series of compositional paths, and it employs attention
to pick the relevant paths during decoding [5].

The paper has tested their approach with two applications, includ-
ing code captioning and code summarization. The dataset that they
have used was gathered from top starred GitHub repositories in C#
and Java languages. The amount of data they used to get promis-
ing results was massive, making this approach ineffective to new
programming languages.

In many scenarios, collecting sufficient training data is often expen-
sive and time-consuming, or in some cases, impossible. However,
we may be able to apply what we have learned to other program-
ming languages. This approach, known as transfer learning, focuses
on transferring knowledge across domains, and it is a promising
machine learning methodology for solving the above problem.

Transfer learning has shown promising results in many fields of
deep learning, such as computer vision [20], reinforcement learn-
ing [18], and sentimental analysis [14]. Using networks trained
on millions of existing data, we can leverage this knowledge to
speed up the training process for new applications, programming
languages, or even updating our previous models.

In this project, a new dataset on a new programing language (Python)
has been collected and went through the cleaning process. All the
files are from top-stared non-forked GitHub repositories. Methods
were taken from files, and their names were used as labels for this
assignment. In the last data preprocessing stage, AST paths have
been extracted from these methods and stored in 3 separate train,
validation, and test files.

This project aims to determine whether we can use the new Python
dataset to utilize transfer learning in Code2Seq architecture. First,
a model has been trained on the Java dataset from the paper. This
model will be used as our pre-trained model to transfer knowledge
from Java to Python.

Since we are training on different programming languages, our em-
bedding layers may not contain all the tokens. I have replaced the
non-existing tokens and set their weight to the initial value using
Xavier’s method to mitigate this issue. Then, I have only trained
the embedding layers of the pre-trained model on the new Python
dataset.

Next, I have done a factorial experiment to see which part of
Code2Seq architecture can generalize across programming lan-
guages. I have divided the architecture into three parts: embedding
layers, encoder, and decoder. Since I have already trained the em-
bedding layers, I ran this experiment twice for encoder and decoder.
Every time I have frozen the weights of the two of three parts and
trained the rest of the model.

From this experiment, I have concluded that the decoder has more
transferable knowledge than the encoder. This is while the embed-
ding layers must be trained due to missing tokens and keywords.
Then, in the next step, I finetuned the pre-trained model to train
on my Python dataset. I have also trained a model from scratch on
the same dataset to compare the precision, recall, and rouge scores.

However, after several epochs, the average loss plateaued, and the
model did not improve further. I have tried boosting the model
architecture to mitigate this issue by adding an LSTM layer to the
decoder. I have transferred all the trained weights from the previous
model right at the plateau point. I improved the model’s precision,
recall, and rouge score by doing this.

In conclusion, I have found that Code2Seq does not work well in the
Python language compared to Java and C#. Since in the paper, they
have also tested Code2Seq with a dataset (small-java) with the same
amount of training samples, it is unlikely that the poor performance
results from a small dataset. However, by finetuning and boosting
GPT-C models, I improved all the metrics on the test samples. Also,
by using a pre-trained model on a large dataset, we can accelerate
the training process for other programming languages. The source
code for this project have been forked from the original GitHub
repository and it is available to the public.

https://github.com/cocolico14/code2seq
2023-03-10 22:28. Page 1 of 1–8.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/cocolico14/code2seq

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 RELATEDWORKS
2.1 Code Embedding
Allamanis et al. have used probabilistic models to do code caption-
ing and retrieval. They have shown their approach on two retrieval
tasks: retrieving source code snippets given a natural language
query and vice versa is promising [4]. However, they have only
tested their approach on a small dataset, and the way they represent
features is by using the bag of words, which may not capture the
local dependencies in a code snippet efficiently.

Later on, Allamanis et al. have presented an approach for name
suggestion for methods and classes based on a neural probabilistic
language model. Their model learned semantically similar tokens
through embeddings and produced names that had not appeared
in the training corpus [1]. However, they have used a log-bilinear
model, which needs to search through word embedding represen-
tations to predict the next word in the target sequence. Also, using
a model as simple as a linear combination of context words may
not produce accurate results. As a result, their approach cannot
produce quality suggestions promptly.

Iyer et al. have proposed CODE-NN to do code summarization and
retrieval. They have used Long Short Term Memory (LSTM) net-
works with "attention" trained on C# code snippets and SQL queries
from StackOverflow [13]. However, they only use token-level infor-
mation without syntactic paths like Code2Seq, which can degrade
the performance in more extended code snippets.

Allamanis et al. also presented an approach based on attention
mechanisms for code summarization. However, they have pointed
out that previous attentional architectures were not explicitly con-
structed to learn translation-invariant features locally. To mitigate
this issue, they have offered to use convolution on the input tokens
to detect such features in a context-dependent way [3]. Neverthe-
less, the size of convolutional windows is dependant on the context
and can not be as informative as syntactic paths.

Bastings et al. presented a practical and straightforward approach
to incorporating syntactic structure in machine translation. They
have utilized graph-convolutional networks (GCNs) to generate
representations of words responsive to their syntactic neighbors
by predicting syntactic dependency trees of source sentences [9].
Allamanis et al. have also extended their Convolutional Attention
Network by using Gated Graph Neural Networks. Their model now
could capture long-range dependencies among variables or func-
tions in a code snippet [2].

Rabinovich et al. presented Abstract syntax networks (ASNs) as an
extension of the standard encoder-decoder framework that uses
a modular decoder with submodels assembled to generate ASTs
natively in a top-down manner. The decoding procedure for every
given input uses a dynamically selected mutual recursion between
the modules to mimic the recursion’s call graph. They have used a
decoder model with several submodels, each connected with a par-
ticular AST grammar construct and called as needed in the output

tree [15]. Their approach can be paired with Code2Seq to seam-
lessly make the end-to-end learning process. Nonetheless, it will
make the overall model too complicated and slow to train.

Alon et al. established code2vec in a prior paper [7], which similarly
used AST paths as input for the encoder. Paths, unlike code2seq, are
embedded as solid context vectors and are not compositional. As a
result, the model overfits to a subset of the paths that have been
observed frequently enough during training. When AST pathways
are analysed node-by-node with LSTMs, the encoder can generalise
even if the paths aren’t identical (e.g., a For-node in one path and a
While-node in the other).

Brockschmidt et al. proposed a generative code model that directs
the generation technique using the semantics of partially created
programs. Using graph neural networks, they have augmented par-
tial programs to obtain a graph to construct an exact representation
for the partial program. They have demonstrated that using this
method; they can construct short but semantically interesting state-
ments from sparse context data [10]. However, more research is
needed to evaluate if this approach can be used in more practical
contexts like code generation and review.

2.2 Transfer Learning
Deep learning has recently gotten much attention from researchers,
and it has been successfully applied to a lot of different fields. How-
ever, it does come with some challenges. Deep learning is chal-
lenging in fields like robotics that rely on limited environmental
feedback rather than precisely classified instances [18]. There are
also cases like activity recognition where the only data source is hu-
man experts, and creating a large dataset can be cumbersome [11].

However, gathering a large data set is not a challenge in some cases.
Instead, finding domain-specific data is difficult or nearly impossi-
ble. For instance, millions of images and text corpus are available
on the internet, while finding data for a specific domain can be
tricky. Using acquired knowledge via transfer learning could be
one way to overcome the shortage of domain-specific data. Many
researchers use transfer learning in computer vision [20], sentiment
analysis [14], and reinforcement learning [18].

Tan et al. define transfer learning and categorize them across four
approaches in their survey. Due to costly data collection and anno-
tation, constructing a large-scale, well-annotated dataset is difficult.
The hypothesis that the training data must be independent and
identically distributed (i.i.d.) with the test data helps us employ
transfer learning to overcome the problem of insufficient training
data. The four categories suggested by Tan et al. are Instances-
based, Mapping-based, Network-based, and Adversarial-based [17].
For this project, I have followed the Network-based approach in
which it reuses the partial of network pre-trained in the source do-
main. However, we will also discuss Adversarial-based later in this
section to propose an alternative approach. A more recent survey
by Zhuang et al. connects and systematizes the existing transfer
learning research and summarizes the mechanisms and strategies

2023-03-10 22:28. Page 2 of 1–8.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Replication of "code2seq: Generating Sequences from Structured Representations of Code" with New dataset (Python) Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of transfer learning comprehensively. The main focus of this survey
is on homogeneous transfer learning. Homogeneous transfer learn-
ing approaches are developed and proposed to handle situations
where the domains are of the same feature space. It also suggests
strategies to avoid the negative transfer, which is when the target
learner is negatively affected by the transferred knowledge [23].

Yao and Doretto propose one possible solution to address the prob-
lem of negative transfer. A boosting framework for inductive trans-
fer learning when knowledge from multiple sources can help be-
cause the chance to import knowledge from a source related to
the target increases significantly [21]. I have partially used their
approach by boosting a trained model with new LSTM layers in
the decoder.

2.3 Recent Works
Adversarial learning methods are a potential way to build robust
deep networks that can generate complicated samples in various
domains. They can also help recognize when the domain shifts
and dataset bias. Tzeng et al. proposed Adversarial Discriminative
Domain Adaptation (ADDA), a framework that combines discrim-
inative modeling, untied weight sharing, and a GAN loss. Their
discriminative modeling can handle significant domain shifts while
exploiting a GAN-base loss [19]. The most recent work of Yefet
et al. studies the adversarial examples with slight mutation to the
input code snippet of models such as code2vec and GNNs, which
results in the prediction of choice from these models. They present
Discrete Adversarial Manipulation of Programs, a new approach
(DAMP). DAMP derives the desired prediction from the model’s in-
puts while keeping the model weights constant and using gradients
to change the input code slightly [22].

Figure 1: Adversarial-based deep transfer learning. The per-
formance of the adversarial layer will affect the transfer
network to find features with more transferability [17].

David and colleagues propose a new method for predicting pro-
cedure names in stripped executables. Static analysis and neural
models are used in their approach. They employ static analysis
to acquire augmented representations of call sites, then use the
control-flow graph (CFG) to encode the structure of these call sites,
and finally, while attending to these call sites, construct a target
name [12].

Table 1: Keywords used in repository search and number of
python files downloaded

Keyword Count Keyword Count
Machine Learning 5k Algorithm 18k

Distributed Computing 6k Python 80k
Blockchain 4k API 9k

Web Application 7k Data 17k
Image Processing 6k Processing 13k

Genomics 3k Internet 7k
Security 16k System 14k
GUI 8k Artificial 13k

Alon et al. recent work is on generating the missing code within
a more extensive code snippet. This is similar to code completion,
but instead of predicting a single token at a time, it can predict
complex expressions. It also utilizes ASTs by decomposing it into
a product of conditional probabilities over its nodes and learning
these conditional probabilities[6].

3 DATA COLLECTION
SRILab collected a dataset of parsed Python ASTs and used it to train
and evaluate their DeepSyn tool project. The Python code snippets
were gathered from GitHub repositories by deleting duplicate files,
project forks (copies of other existing repositories), and removing
obfuscated files keeping only ASTs with at most 30’000 nodes in
them. They used the Python AST parser available in Python 2.7 for
parsing. Their dataset is divided into training files (100,000) and
testing files (50,000) [16].

I followed the same steps to expand their dataset and gather more
Python files. Using GitHub Crawler, I have downloaded top-stared
non-forked Python repositories. Repositories have been selected
from various fields, as shown in Table 1. Since there were some
overlapping projects across these keywords, I removed all the du-
plicated repositories.

3.1 Data Cleaning
After extracting all python files, I have removed all the empty files
and files with sizes less than 1KB. Also, some files did not have
any significant code, like configuration files. These files roughly
consisted of 26k of python files that I have gathered. To find all
the duplicated files, I calculated the md5 hash to spot similarities
between them. This step resulted in removing around 106k files.

Next, I have run a script to pass all the python files from the 2to3
tool. Using this tool allowed me to convert them to Python3 and
normalize the code convention. Moreover, I could spot all the files
with compilation errors and remove them in this process, approxi-
mately 3k files in total.

2023-03-10 22:28. Page 3 of 1–8.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

As I mentioned before, SRILab also gathered a dataset of ASTs from
Python code snippets. They have included their code in which
extracted ASTs from raw source code. I have used the same AST
parser to extract ASTs from python files that I have collected from
GitHub. Like their approach, I only kept trees with less than 30000
nodes. As a side note, at first, due to memory limitations, I only
kept trees that had between 70 and 7000 nodes. However, I was able
to fix the memory leakage later on.

3.2 Data Preprocessing
In this step, I have pulled all the tree paths with less than eight
nodes in them to generate training samples. The length of paths
can be altered based on the scope of block statements in the code.
To capture deep relations between statements, we need paths with
longer lengths. However, this requires us to use more LSTM layers
in the decoder to pull this off.

Besides extracting them, the necessary tokens are also added to the
paths. These tokens include start and end of statement tokens and
tokens for padding. Each sample includes six nodes along the path,
two terminal nodes, and the target token. Since the task is code
summarization for this project, the target is function names.

3.3 Result
In the end, by merging ASTs from what I have gathered and the
SRILab 150k Pyhton dataset, I got 200k files in total. I have used
132k file for training and the rest for testing. After path extraction, I
ended up with 1023848 training samples, 256321 samples for valida-
tion, and 265337 samples for test. The size of my dataset is roughly
a third of the java-med dataset from the paper.

4 METHODOLOGY
As mentioned before, this approach utilizes the AST of source code
snippet in a given language. Terminals are the tree’s leaves, and
they usually relate to user-defined values that represent code iden-
tifiers and names. Nonterminals are non-leaf nodes representing a
limited number of language structures, such as loops, expressions,
and variable declarations.

Given the AST of a code snippet, all pairwise paths between ter-
minals are considered and represented as sequences of terminal
and nonterminal nodes. Since a code snippet can contain an arbi-
trary number of such paths, several paths have been sampled as
the representation of the code snippet. In every training iteration,
several new paths are sampled afresh to avoid bias by providing
regularization, which has improved the testing results. An example
of AST of a code snippet is illustrated in 2.

The model is based on GPT-2 with modifications to take AST paths
as input. The encoder does not interpret the input as a flat sequence
of tokens. Instead, the encoder creates a vector representation for
each AST path separately, and the decoder uses the averaged en-
coded feature vectors to generate the target sequence.

Figure 2: An example of AST for a Java method, different
paths highlighteing the terminal nodes and statements in
between.

Given a set of AST paths, the goal is to create a vector representa-
tion to feed our model. Each path consists of several nodes and two
terminal tokens. The way we will map nodes and terminals will
be slightly different. However, like GPT-2, we will use contextual
embedding for both of them to convert words into feature vectors.

As for the path representation, we will pass the words through
an embedding matrix. The weights for this matrix will be updated
during the training process. Then the entire sequence will be en-
coded using a BiLSTM. In the end, the final states of the forward
and backward pass will be concatenated. As for the token represen-
tation, we split the tokens into subtokens by leveraging the snake
case convention in Python code. These subtoken will be passed
through a learned embedding matrix and get summed up to be later
concatenated with path representation.

This combined representation will be for a single path. Several paths
will be encoded in parallel at each training step and pass through
a dense layer for the decoding step. These paths will be sampled
randomly, resulting in reduced variance and a more stable learning
process.

The order of the random pathways is ignored, unlike in traditional
encoder-decoder models. Each path is encoded separately to ini-
tialize the decoder’s state, and the combined representations are
aggregated by mean pooling. Finally, the decoder constructs the
output sequence while attending to all combined representations

2023-03-10 22:28. Page 4 of 1–8.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Replication of "code2seq: Generating Sequences from Structured Representations of Code" with New dataset (Python) Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: code2seq model outperforming previous PL-oriented and NMT models [5]

Model
Java-small Java-med Java-large

Prec Rec F1 Prec Rec F1 Prec Rec F1

Paths+CRFs [8] 8.39 5.63 6.74 32.56 20.37 25.06 32.56 20.37 25.06
code2vec [7] 18.51 18.74 18.62 38.12 28.31 32.49 48.15 38.40 42.73

ConvAttention [3] 50.25 24.62 33.05 60.82 26.75 37.16 60.71 27.60 37.95
2-layer BiLSTM 42.63 29.97 35.20 55.15 41.75 47.52 63.53 48.77 55.18

code2seq 50.64 37.40 43.02 61.24 47.07 53.23 64.03 55.02 59.19
Absolute gain over BiLSTM +8.01 +7.43 +7.82 +6.09 +5.32 +5.71 +0.50 +6.25 +4.01

Figure 3: Each AST path is encoded as a vector in the GPT-C
model, and the average of all k paths is used as the decoder’s
initial state. While attending to the k encoded paths, the
decoder generates an output sequence.

by selecting the distribution over these k combined representations
using an attention mechanism.

To investigate the impact of techniques used in Code2Seq, they
have done an ablation study. They have tested the variation of
their model on the java-med dataset by removing certain aspects.
Their first experiment was only to encode the terminal nodes and
ignore the rest from the paths. The outcome was still better than
the baseline, and they claim that more LSTM layers can mitigate
this degradation in performance.

Removing the decoder has lost more than one-third of the overall
performance. Despite the methods’ brief names, this reveals that
the method name prediction task should be approached as a sequen-
tial prediction, not with a single softmax layer. They also found
that not splitting tokens and not having tokens reduces the score
significantly, demonstrating the need to record both subtokens and
syntactic routes.

Finally, the no random experiment indicates that choosing k dif-
ferent paths anew on each training iteration, rather than using the
same sample of paths from each example throughout the training,
adds data-level regularisation, improving the model’s performance.

My contribution to this project is to try this approach on a new
programming language. I have collected a dataset on ASTs extracted
from Python code snippets and trained the model. However, I could
not achieve the same performance for the Python language. To get
better performance, I tried to transfer already learned knowledge
on a large corpus of data to gain an advantage for training my new
model. I studied different parts of the architecture to find out how to
finetune the model for transfer learning. Moreover, by boosting the
architecture, I achieved better performance. In the next section, I
will answer three research questions that I have studied throughout
this project and share my results.

5 RESEARCH QUESTIONS
5.1 Which part of this architecture can be

generalized across languages?
To answer this question, I will first define the notion of transferabil-
ity. By observing the rate of accuracy improvement of a pre-trained
model on a new dataset based on a group of trainable variables, we
can decide the transferability. I have separated the GPT-C archi-
tecture into embedding, encoder, and decoder sections and ran an
experiment to check the transferability of each of these sections.

The pre-trained model published by the paper’s authors was not
trainable, so I had to train the model on the java-med dataset from
scratch. I did not choose the java-large dataset (nearly 16M training
samples) because the memory provided by colab was not enough. I
have trained the model for 15 epochs (as shown in figure 4) which
took three days to train, and saved the model for my experiment.
Due to differences in keywords and statements between Java and
Python languages, some keywords were missing from the embed-
ding matrices. So, I have replaced the missing words and reinitial-
ized the weights based on Xavier’s method. Then, I retrained the
embedding matrices for five epochs and saved this model as my
initial pre-trained model for the rest of the experiment. Looking
at the accuracy trend during training, it was clear that embedding
layers were transferable to some extend. After epoch three, the
accuracy plateaus and does not improve any further, which means
knowledge from the Java dataset is not enough on its own.

Next, I froze all the trainable variables related to the embedding
layers and decoder to test the transferability of the encoder. There
is a steady increase in accuracy this time, unlike the embedding

2023-03-10 22:28. Page 5 of 1–8.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: The accuracy of code2seq model trained on java-
med data set which later on used for the transferability ex-
periment.

layer. I have repeated this test for the decoder, which resulted in
slightly less accuracy than the previous experiment.

Figure 5: Comparison of accuracy of transferability experi-
ment on three different sections of GPT-C architecture. The
embedding section used the java-med pre-trained model
while the other two used the trained embedding model after
five epochs.

In conclusion, the decoder has the most transferability between
decoder and encoder. As shown in Figure 5, the model where every
weight but encoder weights are frozen achieved higher accuracy.
This means that decoder weights transfer more helpful knowl-
edge from the source domain (Java-Med) to the target domain
(Python199k). However, due to the slight value difference (0.093%),
one can argue that this is noise, and both sections have the same
transferability.

Table 3: Comparison of accuracy, recall, precision, and
rouge metrics between three models. They are all tested on
Python199k test set

Model Acc Rec Prec Rouge-2 Rouge-l
Python150k 14.243% 24.988% 36.082% 4.111% 30.702%
Python199k 14.209% 23.848% 42.654% 4.128% 32.922%
Fine Tuned 15.535% 26.484% 42.766% 5.832% 35.229%

5.2 Can this architecture help transfer learning?
The main paper tested their model on C and Java, but SRILab al-
ready provided an AST dataset on Python. The authors have tested
this dataset on their model in their GitHub repository. However,
the performance is not as good as Java or C# counterparts for code
summarization.

Since they have made their java-med dataset which consists of 4M
training samples, one can leverage the existing data to train a model
for a new programming language. I used Network-based deep trans-
fer learning for this project, which reuses the pre-trained partial
network in the source domain (Java-med), including its network
structure and connection parameters, and transfers it to a part of
the model used in the target domain (Python199k).

As for the baseline, I have trained on both SRILab’s Python150k
dataset and my Python199k dataset. However, I have trained from
scratch in both of these baseline models for 20 epochs and did
not use pre-trained models. The validation set for Python150k and
Python199k will be slightly different (Python199k has more vali-
dation samples), but I have tested all three with the same testing
samples.

After discovering the transferability of each section in GPT-C ar-
chitecture from the previous experiment, I came up with this fine-
tuning configuration (trained on Python199k). I have set the learn-
ing rate of embedding layers to 0.001, encoder to 0.005, and decoder
to 0.01. I have trained this network using the pre-trained model (5
epochs on the embedding network with java weights) for 20 epochs.

In conclusion, by transferring knowledge from a pre-trained model
on the Java-med dataset, we achieved better performance in all met-
rics on the test set. This method improved not only the performance
of our model but also sped up the convergence time (in terms of the
number of epochs to reach a decent accuracy) compared to training
from scratch.

5.3 Can we improve the accuracy by changing
the architecture?

As shown in figure 6, all performance metrics start to plateau and
do not improve. The reason behind this might because of negative
transfer. It can happen for various reasons, including the relevance
of the source and target domains or the learners’ ability to locate
transferable and valuable information across domains.

2023-03-10 22:28. Page 6 of 1–8.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Replication of "code2seq: Generating Sequences from Structured Representations of Code" with New dataset (Python) Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Comparison of accuracy, precision, and recall between three models. Validation set is slightly different between
Python150k and Python 199k datasets.

According to Yao and Doretto, getting knowledge from numerous
sources will raise the chances of identifying one source close to the
target and reduce negative transfer. They have also proposed that
boosting methods such as AdaBoost can also reduce the impact of
negative transfer. Due to the lack of resources, I can only add more
layers to boost my model and continue the training to overcome
this issue.

At first, I wanted to use stacked BiLSTM as an encoder and add
more LSTM layers to the decoder. However, the GPUmemory could
not handle stacked BiLSTM, so I ended up only adding more layers
to the decoder. I have continued training from epoch 27 while using
this new architecture.

Figure 7: Comparison of accuracy boosting and not boosting.
The boosting happens right at epoch 27.

I have also continued training with the previous model until it
reached 40 epochs to compare these two approaches. As shown
in figure 7, the accuracy decreases for two epochs but instantly
gains momentum and improves over the rest of the training epochs.
However, the performance gain in the test set is not that significant.

6 THREATS TO VALIDITY & LIMITATIONS
Unlike the result reported in the paper, this approach did poorly on
Python language. There are several possible reasons for the unsat-
isfactory performance. First, we will discuss the probable reasons,

Table 4: Comparison of accuracy, recall, precision, and rouge
metrics between boosting and no boosting. They are all tested
on Python199k test set

Model Acc Rec Prec Rouge-2 Rouge-l
No Boosting 16.423% 27.605% 42.430% 5.832% 35.229%
Boosting 16.793% 27.651% 43.618% 6.074% 36.074%

and then we will state the limitation of my approach and this model.

First of all, this project was only tested on a limited Python dataset.
While there are nearly 1M training samples in our collected dataset,
it might not be enough.We can compare our dataset with Java-small
since they have roughly the same training samples. Code2Seq on
java-small achieved 50.64% precision, 37.40% recall, and an F1 score
of 43.02%. This is while our best model achieved 43.62% precision,
27.65% recall, and an F1 score of 33.85%.

Another possible reason could be the quality and variety of the
collected database. Java-small was collected from only 11 relatively
large Java projects. In contrast, my database was collected over a
variety of keyword searches. This is when larger datasets such as
java-med or java-large are considering variety after gathering over
1000-9500 repositories.

Lastly, it could be that this approach needs extensive hyperparam-
eter tuning. I have used the same configuration for Java training.
The main reason for not changing the configuration was to transfer
the pre-trained weights seamlessly. This is also one of the first limi-
tations of using transfer learning. To transfer pre-trained weights
from a source domain to a target domain, we must ensure that both
source and target architectures are compatible.

Most of the time same configurations do not apply to both models.
For instance, based on the size of the dataset, it might not be fea-
sible to use large batch sizes. Changing the batch size means that
some weights must be discarded, which means losing transferable
knowledge.

Another limitation is the issue of negative transfer since the source
domain, and target domain might not be in the same feature space.

2023-03-10 22:28. Page 7 of 1–8.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

As mentioned in the related work section, there are new ways to
mitigate this issue. However, they need more computational power
and complicate the training process.

7 CONCLUSION
In conclusion, I discovered that Code2Seq does not perform as well
in Python as in Java and C#. It is doubtful that the poor performance
is due to the short dataset because the publication also evaluated
Code2Seq using a dataset (small-java) with the same number of
training samples. However, as mentioned in the previous section,
the dataset’s quality might be inferior, or the models need more
hyperparameter tuning.

Moreover, by finetuning GPT-C models, I improved all the met-
rics on the test samples. Also, by using a pre-trained model on a
large dataset, I have accelerated the training process for my dataset.
This also shows the transferability of encoder and decoder vari-
ables. To mitigate the negative transfer issue, I boosted the model’s
architecture and improved all metrics.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 38–49.

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learn-
ing to Represent Programs with Graphs. CoRR abs/1711.00740 (2017).
arXiv:1711.00740 http://arxiv.org/abs/1711.00740

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
conference on machine learning. PMLR, 2091–2100.

[4] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
Modelling of Source Code and Natural Language. In Proceedings of the 32nd
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 2123–
2132. https://proceedings.mlr.press/v37/allamanis15.html

[5] Uri Alon, Omer Levy, and Eran Yahav. 2018. code2seq: Generating Se-
quences from Structured Representations of Code. CoRR abs/1808.01400 (2018).
arXiv:1808.01400 http://arxiv.org/abs/1808.01400

[6] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2019. Structural Language
Models for Any-Code Generation. CoRR abs/1910.00577 (2019). arXiv:1910.00577
http://arxiv.org/abs/1910.00577

[7] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. code2vec:
Learning Distributed Representations of Code. CoRR abs/1803.09473 (2018).
arXiv:1803.09473 http://arxiv.org/abs/1803.09473

[8] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A General Path-
Based Representation for Predicting Program Properties. SIGPLAN Not. 53, 4 (jun
2018), 404–419. https://doi.org/10.1145/3296979.3192412

[9] Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil
Sima’an. 2017. Graph convolutional encoders for syntax-aware neural machine
translation. arXiv preprint arXiv:1704.04675 (2017).

[10] Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polo-
zov. 2018. Generative code modeling with graphs. arXiv preprint arXiv:1805.08490
(2018).

[11] Diane Cook, Kyle D Feuz, and Narayanan C Krishnan. 2013. Transfer learning for
activity recognition: A survey. Knowledge and information systems 36, 3 (2013),
537–556.

[12] Yaniv David, Uri Alon, and Eran Yahav. 2019. Neural Reverse Engineering of
Stripped Binaries. CoRR abs/1902.09122 (2019). arXiv:1902.09122 http://arxiv.
org/abs/1902.09122

[13] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073–2083.

[14] Ruijun Liu, Yuqian Shi, Changjiang Ji, and Ming Jia. 2019. A survey of sentiment
analysis based on transfer learning. IEEE Access 7 (2019), 85401–85412.

[15] Maxim Rabinovich, Mitchell Stern, andDan Klein. 2017. Abstract syntax networks
for code generation and semantic parsing. arXiv preprint arXiv:1704.07535 (2017).

[16] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic Model
for Code with Decision Trees. SIGPLAN Not. 51, 10 (oct 2016), 731–747. https:

//doi.org/10.1145/3022671.2984041
[17] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-

fang Liu. 2018. A survey on deep transfer learning. In International conference on
artificial neural networks. Springer, 270–279.

[18] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, 7 (2009).

[19] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversar-
ial discriminative domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7167–7176.

[20] Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey.
Neurocomputing 312 (2018), 135–153.

[21] Yi Yao and Gianfranco Doretto. 2010. Boosting for transfer learning with multiple
sources. In 2010 IEEE computer society conference on computer vision and pattern
recognition. IEEE, 1855–1862.

[22] Noam Yefet, Uri Alon, and Eran Yahav. 2019. Adversarial Examples for Models of
Code. CoRR abs/1910.07517 (2019). arXiv:1910.07517 http://arxiv.org/abs/1910.
07517

[23] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE 109, 1 (2020), 43–76.

2023-03-10 22:28. Page 8 of 1–8.

https://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://proceedings.mlr.press/v37/allamanis15.html
https://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1910.00577
http://arxiv.org/abs/1910.00577
https://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1803.09473
https://doi.org/10.1145/3296979.3192412
https://arxiv.org/abs/1902.09122
http://arxiv.org/abs/1902.09122
http://arxiv.org/abs/1902.09122
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1145/3022671.2984041
https://arxiv.org/abs/1910.07517
http://arxiv.org/abs/1910.07517
http://arxiv.org/abs/1910.07517

	1 Introduction
	2 Related Works
	2.1 Code Embedding
	2.2 Transfer Learning
	2.3 Recent Works

	3 Data Collection
	3.1 Data Cleaning
	3.2 Data Preprocessing
	3.3 Result

	4 Methodology
	5 Research Questions
	5.1 Which part of this architecture can be generalized across languages?
	5.2 Can this architecture help transfer learning?
	5.3 Can we improve the accuracy by changing the architecture?

	6 Threats to Validity & Limitations
	7 Conclusion
	References

