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0.1 Architecture

0.1.1 Feature Extraction

Phase 1 of our model involves extracting the image features using a pretrained
(on ImageNet dataset) version of Keras MobileNet [2] model which is sliced at
the last convolutional layer. This is accomplished using the encode images
method of class CNN in the python library imagededup [3]. The method
generates a feature vector (of length1024 in our case) for each image in the
specified directory by propagating the images through the above mentioned
pretrained and sliced version of Keras MobileNet and generate required en-
codings which are then passed as input to the LightGBM[1] classifier (for
training and drawing inference).

0.1.2 Classification

We used one of the most widely used gradient boosting framework - Light
Gradient Boosting Machine (LightGBM) in this phase. We train the Light-
GBM model under 7-fold cross validation. The significant hyperparameters
are set as follows:

1. metric = [‘multi logloss’, ‘auc mu’],

2. learning rate=0.15 (with Cosine Annealing with max=0.15, min=0.01,
T=10)

3. num boost round = 2500,

4. boosting = ‘dart’,

5. max depth = 7,

6. num leaves = 64,

7. max bin = 63,

8. reg lambda (L2) = 0.25

9. drop rate = 0.4

10. bagging fraction = 0.55

11. bagging freq = 4
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0.2 Regularization Techniques

In our algorithm, we applied the decision tree approach called “LightGBM”
proposed by Ke et al.[4] for efficient classification. Implementation of the
technique is based on: https://github.com/microsoft/LightGBM. According
to the documentation of the Github project, the package provides two reg-
ularization methods: L1 (Lasso Regression) and L2 (Ridge Regression). L1
regularization aims to shrink the less important feature’s coefficient to 0
while L2 regularization aims to adjust the less important feature’s coefficient
to very small non-zero value. Since in the decision tree we have already se-
lected our features, eliminating them would not be helpful. Thus, we used
L2 regularization that penalizes the weights to be small instead of 0.

Loss2 = Error(y, ŷ) + λ
N∑
i=1

w2
i (1)

Also, the setting of boosting parameter to DART (Dropouts meet Multiple
Additive Regression Trees) and setting limit of 7 on tree depth, a limit of 64
on number of leaves and a limit of 63 on number of bins also help regularize
the model. Furthermore, the use of bagging (use fraction of training in each
epoch) and and augmentation of training data also result in regularizing the
model.

0.3 Training Details

The MobileNet model used to extract features is pre-trained on ImageNet
dataset (See https://idealo.github.io/imagededup/methods/cnn/ for de-
tails). The LightGBM classifier model is trained using 7-fold cross validation
on feature vectors extracted from training images in prior step.

0.4 Data Processing

Our pre-processing pipeline is like this:
First we did cleaning on the data set and found 280 images where there

were no plant, 2 or 3 different plants in the same image, or images where there
was something in the camera’s way. We found these images by clustering
(Gaussian mixture method) features given by MobileNetV3.

Next we augmented the data set to 104k images using Imgaug library.
We used: random horizontal flips, random crops, weak Gaussian blur, vary
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Figure 1: Augmented images

Figure 2: Removed images
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the contrast, piecewise affine, perspective transforms, random affine, and
changed the lighting of images.

We also tried leaf segmentation using k-mean. Although our methodology
segmented leaves perfectly (it also excluded the soil), it didn’t improve the
test accuracy by more than 63%.

We trained a 7-fold LGBM+DART model on P100 GPU in 57 minutes
and the min testing accuracy on these folds were 76.81%, max testing accu-
racy was 77.89%, and voting gives 77.78% test accuracy.

0.5 Top 1 Accuracy

Figure 3: Multi-log loss
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Figure 4: AUC mu
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